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Numerical renormalization-group �NRG� calculations of quantum impurity models, based on a logarithmic
discretization in energy of electronic or bosonic Hamiltonians, provide a powerful tool to describe physics
involving widely separated energy scales, as typically encountered in nanostructures and strongly correlated
materials. This main advantage of the NRG was however considered a drawback for resolving sharp spectral
features at finite energy, such as dissipative atomic peaks. Surprisingly, we find a bunching of many-body
levels in NRG spectra near dissipative resonances, and exploit this by combining the widely used Oliveira’s z
trick, using an averaging over few discrete NRG spectra, with an optimized frequency-dependent broadening
parameter b���. This strategy offers a tremendous gain in computational power and extracts all the needed
information from the raw NRG data without a priori knowledge of the various energy scales at play. As an
application we investigate with high precision the crossover from coherent to incoherent dynamics in the spin
boson model.
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A general hallmark of many-particle interaction, as found
in a variety of condensed-matter systems such as nanostruc-
tures and strongly correlated materials, lies in the presence of
several energy scales, possibly widely separated from each
other due to renormalization and dynamical effects. Two
well-studied examples found in electronic systems concern
the Kondo effect for magnetic impurities in metals and Fermi
liquids in proximity to a Mott insulating phase, two instances
where low-energy quasiparticles emerge below a typical tem-
perature which is quite reduced from the bare Fermi energy.1

These low-lying excitations do however coexist with higher
energy atomic levels, also broadened and displaced in a
strong manner from their bare atomistic values due to the
dissipation brought by the electronic environment. Such
complex physical effects, taking place on a broad range of
energies, entail great practical difficulties for most direct nu-
merical approaches. These are partially lifted using Wilson’s
original idea of the logarithmic discretization,2,3 as imple-
mented in numerical renormalization-group �NRG� calcula-
tions �see Ref. 4 for a recent review�. This technique has
been improved in the last twenty years to calculate static and
dynamic quantities both for fermionic5 and bosonic quantum
impurity models.6 Important practical applications until now
involve the calculation of transport in the Kondo regime for
Kondo alloys and artificial quantum dots,7 as well as the
accurate description of the zero-temperature Mott transition
by combining NRG �Ref. 8� with dynamical mean-field
theory �DMFT�.9 More generally, exponentially small energy
scales are also found in the vicinity of quantum critical
points10 so that impurity models provide a simplified test bed
for the theory of quantum critical phenomena.11 Again the
NRG is the ideal technique for studying such impurity quan-
tum phase transitions,4 with potential implications for artifi-
cial nanostructures.12,13

Despite these successes, the foundation of NRG on a
logarithmic discretization mesh implies a loss in accuracy for
the high-energy spectral features, which has plagued most
calculations so far. Not only are atomiclike excitations physi-

cally observable, using photoemission or tunneling spec-
troscopies, but they may also be intimately tied to the low-
energy excitations. Such interesting behavior occurs in the
vicinity of the Mott metal-insulator transition,9 where the
self-consistently determined electronic environment in the
DMFT picture shows electronic states violently redistributed
over all energy scales. The numerical cost of converging the
DMFT equations certainly requires efficient and accurate
NRG calculations for the spectral functions, without a priori
knowledge of the excitations involved. For this reason, the
idea of averaging over Nz realization of the Wilson chain,
using the so-called z trick14 to fill in the missing spectral
information �to be discussed later on�, seems prohibitive
for most practical calculations, and offers a limited gain for
very narrow spectral structures �see Ref. 15 for a detailed
study�.

In this Rapid Communication, we show that the broaden-
ing procedure used to smoothen the discrete NRG data is one
critical step for obtaining an optimal resolution at all ener-
gies. We henceforth develop a simple adaptive procedure
where the standard broadening parameter b is taken to be
frequency dependent. This choice is dictated by our surpris-
ing observation that the density of many-body NRG levels
increases sharply as soon as narrow atomic resonances are
encountered. Together with the usual z trick, combining sev-
eral but reasonably few NRG calculations, this extra b���
trick allows computation of finite frequency spectra using as
little as Nz=10 NRG calculations, in situations where large
scale NRG z averaging would be prohibitive. An improved
broadening procedure leading to errors in spectral functions
limited to few percents could constitute a further step in ap-
plying the NRG to a wider class of problems, such as
DMFT+NRG calculations.

In order to explicitly demonstrate these ideas, we focus on
the simplest quantum impurity model, namely, the spin bo-
son Hamiltonian:
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which involves a two-level system, described by a quantum
spin 1/2, and a bosonic bath ai

† with continuous spectrum �i
of energies. � is a transverse magnetic field while the cou-
pling constant � controls the strength of longitudinal dissipa-
tion. The bosonic spectrum is assumed to be sub-Ohmic with
bath exponent 0�s�1 �this includes the well-studied
Ohmic case s=1�:

J��� � �
i

��2��� − �i� = 2�	�c
1−s�s
���
��c − �� ,

�2�

where �c is a high-energy cutoff. For small values of the
dissipation 	, this model is known to exhibit coherent pre-
cession of the spin around the x axis at zero temperature. By
increasing the coupling to the bath for values of s�1, Rabi
oscillations are progressively damped16 before the two-level
system localizes in one potential minima via a quantum
phase transition.6 When s�0 however, the phenomena of
localization and decoherence occur in reverse order.17 De-
spite its simplicity, this model embodies all the effects typi-
cal of strong correlations: low-energy scales are indeed dy-
namically generated near the localization transition while
discrete spin excitations due to the transverse field � are
deeply affected by the bosonic environment, which leads to
broadening and frequency shift in the magnetic response
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1
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with C�t�= 1
2 ���z�t� ,�z�	 as the spin autocorrelation function.

The implementation of the NRG procedure follows the
standard route2 as discussed in Ref. 6 for the extension to
bosonic Hamiltonians. Bosonic band �2� is logarithmically
discretized with the Wilson parameter ��1 first on the high-
est energy interval ��−z�c ,�c�, and then iteratively on suc-
cessive decreasing energy windows ��−n−z�c ,�−n−z+1�c� for
n strictly positive integer. This also introduces the crucial z
parameter �0�z�1� that is used to average over Nz Wilson
chains,14 allowing to obtain better resolution on the finite
energy states. The rest of the NRG follows Ref. 6, coupling
iteratively the kept energy levels up to iteration n to the
states living in the shell n+1, and truncating the successive
Hamiltonians to keep up with a manageable number of
eigenstates. All subsequent calculations were performed with
�=2, Nb=8 kept bosonic states on the added bosonic “site,”
and N=160 kept NRG states, ensuring good convergence.
The resulting discrete spectra at successive NRG iterations
are combined using the interpolation scheme proposed in
Ref. 18 �see however Ref. 19 for a more rigorous implemen-
tation�, leading to a set of z-dependent many-body energy
levels �a,z labeled by quantum number a. The spin-spin cor-
relation function is thus readily obtained at zero temperature
as

C��� =
1

2Nz
�
a,z


�0,z
�z
a,z	
2��
�
 + �0,z − �a,z� , �4�

where �0,z is the ground-state energy, and these raw NRG
data are displayed in Fig. 1, to be discussed below.

Let us now discuss the general structure of the NRG spec-
tra. For a single NRG calculation with a given value of z, the
a priori energy resolution at the scale �N=�−N−z is ��N
=�−N−z−�−N−z−1= �1−�−1��N, so that the resolution de-
grades at increasing energy. For obtaining smooth NRG
spectra, the delta peaks in Eq. �4� are usually broadened4 at
energy �N on the same scale:

��
�
 − �N� →
e−b2/4

�Nb��
e−�log�
�
/�N�2/b�2

, �5�

with b�0.7 typically. Combining Nz NRG runs using the z
averaging in Eq. �1� allows in principle improving of, by a
factor Nz, the accuracy at high energy since the broadening
parameter may now be decreased down to b=0.7 /Nz. This
procedure actually faces two problems: �i� for very sharp
resonances �typically several orders of magnitude narrower
than the natural high-energy cutoff�, parallelizing Nz�10
NRG calculations becomes too prohibitive, especially with
the aim of DMFT simulations; �ii� states far from the reso-
nances can then be too much underbroadened so that oscil-
lations of period � /Nz can become quite prominent. In this
view, quantitative spectra can be accurately extracted from
the NRG data only in the continuum limit, either with �
→1 or Nz→ +
, as assumed in the previous literature.15,20,21

We wish to show however that NRG provides much more
information close to dissipative resonances than usually ex-
pected. For this purpose, we closely examine the raw NRG
spectra for resonance widths as small as 10−4�c, using rea-
sonably few interleaved averaging Nz=20, much smaller than
the naively needed 104 NRG runs. Figure 1 shows that, for
frequencies far from the resonance located at �, the highest
weight NRG states come in packets of Nz peaks for a given
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perturbative
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FIG. 1. �Color online� Spin susceptibility C��� of the sub-
Ohmic spin boson model at s=0.1, �=0.1�c, and 	=0.000 125.
Raw data 
�0,z
�z
a ,z	
2 / �2Nz��a,z−�0,z�� are given as circles for
Nz=20 combined NRG calculations, solid line is perturbative result
�6�, and the three dashed lines are the various NRG broadenings
discussed in the text.
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Wilson shell. Surprisingly, the density of NRG eigenstates
demonstrates a huge increase precisely at the peak value so
that information about the resonance width and height seems
really encoded in the discrete results. The standard broaden-
ing b=0.7 /Nz=0.035 is however way too large to benefit
from this effect, and the corresponding smoothed spectra are
indeed completely inaccurate. For definite comparison, we
have plotted the analytical result obtained from the expan-
sion at weak dissipation:22

C��� = −
1

�
Im

� − ����
��� − ����� − �2 ,

���� =� d�

�
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0

�c

d�
2	�c

1−s�s

� − � + i0+ . �6�

In order to judiciously exploit this unexpected finding, the
straightforward idea we follow here is to adapt the broaden-
ing parameter b in Eq. �5� to the frequency dependence of
the local density of NRG peaks. A very natural approach
adapted to the NRG logarithmic discretization is to extract
b��� from the logarithmic derivative of the integrated spec-
trum up to frequency �:

b��� =
b0

2

�q +

d log�
0

�
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d log �
�

−1

+ �q +

d log�
+


�

C

d log �
�

−1

� ,

�7�

where q�1 is regularization parameter, whose precise value
is not sensitive to the final results, and b0 sets the typical
broadening at very low and very high frequencies �far from
the atomic resonances�. Note indeed that we average in this
expression two frequency sweeps from �=0 and �= +
,
respectively, in order to treat, on an equal basis, low- and
high-frequency tails. Because the actual NRG data is fully
discrete �Eq. �4��, we extract b��� recursively using Eq. �7�
on the broadened NRG spectra. This procedure converges
after few iterations to the results displayed in Figs. 1 and 2.
Given the small numerical effort devoted to generate these
NRG data, the quality of final result is quite astonishing. The
reason for this success is given in Fig. 2, where the b���
parameter takes values as small as 10−4 at the resonance
while it increases drastically far away from it, naturally can-
celing out a great part of the NRG oscillations due to the
discretization of the Wilson chain. We emphasize that the
only free parameter is the typical low-frequency broadening
b0 in Eq. �7�, which is easily adjusted: we always find a
range of b0 values where the self-consistently broadened
spectrum is relatively independent of the chosen b0. More
generally, one can also avoid the use of ansatz �7� by deter-
mining b��� from estimates of the local density of highest
weight states in the raw NRG data, giving similar results.
Large scale NRG simulations with Nz�10 and fixed b, as
performed, e.g., in Ref. 15, may thus benefit greatly from an
adaptive broadening procedure. We also note that the high-
frequency tails are also faithfully reproduced using the b���
trick. Finally, in situations where relatively broader reso-
nances are present, we show that quantitative results can be

obtained at lower computational cost by decreasing signifi-
cantly the number of z averaging even as low as Nz�5, see
Fig. 3.

In order to check that our broadening procedure is com-
pletely robust for the whole range of parameters in model
�1�, we investigate the effect of increasing dissipation for
several bath exponent values s. The quantitative comparison
of the Rabi resonance to the analytical formula �6� in its
domain of validity, namely, 	�1, gives us indeed confi-
dence in the adaptative method. This is proved in Figs. 4 and
5, which consider the same parameters as in Ref. 17, with
important quantitative improvement. For the small value of
s=0.1 taken in Fig. 4, the perfect matching of the NRG data
on the resonance to the lowest-order calculation in 	 shows
that the dissipation mechanism does not care for the low-
energy behavior of the spin dynamics, even at the quantum
critical point6,17 where the spin localizes for the values 	c
=0.0071 and 0.105 with s=0.1 and 0.5, respectively �� /�c
=0.1 and �=2 here�. Interestingly, the low-energy tails show
significant deviations from analytical result �6� even far from
the quantum phase transition so that lowest-order
calculations22 do not apply for the long-time dynamics. Im-
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FIG. 2. �Color online� Comparison of various broadening pro-
cedures near the resonance for the parameters of Fig. 1: standard
interleaved averaging with Nz=20 and b=0.7 /Nz=0.035 �dash-
dotted line�, b��� trick with b0=0.12 �dashed line�, and analytical
result �full line�. The adaptive broadening parameter b��� is also
given �note the logarithmic scale on the right�.
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FIG. 3. �Color online� Similar comparison as done in Fig. 2,
with stronger dissipation 	=0.02. Optimized broadenings with b���
trick were done with Nz=2,20 and b0=0.6,0.12, respectively.
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proved resummation of the perturbation theory to all orders
in 	 will be considered in a forthcoming work.23 For the
intermediate value s=0.5 shown in Fig. 5, clear nonpertur-
bative effects on the resonance are seen in between the weak-
coupling regime and the quantum critical point so that per-
turbation theory in 	 breaks down.

To conclude, we have investigated the properties of dis-
crete NRG spectra near atomic states in the spin boson
model and found that a bunching of the many-body levels

occurs whenever sharp resonances are encountered. An adap-
tive broadening scheme was proposed, showing a drastic im-
provement in computation power for the calculation of accu-
rate spectral functions over the whole energy range. This
procedure will certainly allow taking further advantage of
the potentialities of the NRG in a wide range of physical
situations, from ab initio calculations for magnetic impurities
in metals24 to the difficult problem of simulating strongly
correlated materials in the framework of the dynamical
mean-field theory.9
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FIG. 4. �Color online� Comparison of optimized NRG spectra
�solid lines� and perturbative calculations �dashed lines� with bath
exponent s=0.1, �=0.1�c, and increasing values �arrow� of dissi-
pation 	=0.002,0.004,0.007.
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FIG. 5. �Color online� Similar plot as in Fig. 4, with bath expo-
nent s=0.5, �=0.1�c, and 	=0.02,0.06,0.10.
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